An hp-local discontinuous Galerkin method for some quasilinear elliptic boundary value problems of nonmonotone type
نویسندگان
چکیده
In this paper, an hp-local discontinuous Galerkin method is applied to a class of quasilinear elliptic boundary value problems which are of nonmonotone type. On hp-quasiuniform meshes, using the Brouwer fixed point theorem, it is shown that the discrete problem has a solution, and then using Lipschitz continuity of the discrete solution map, uniqueness is also proved. A priori error estimates in broken H1 norm and L2 norm which are optimal in h, suboptimal in p are derived. These results are exactly the same as in the case of linear elliptic boundary value problems. Numerical experiments are provided to illustrate the theoretical results.
منابع مشابه
Discontinuous Galerkin Finite Element Approximation of Quasilinear Elliptic Boundary Value Problems Ii: Strongly Monotone Quasi-newtonian Flows
In this article we develop both the a priori and a posteriori error analysis of hp– version interior penalty discontinuous Galerkin finite element methods for strongly monotone quasi-Newtonian fluid flows in a bounded Lipschitz domain Ω ⊂ R, d = 2, 3. In the latter case, computable upper and lower bounds on the error are derived in terms of a natural energy norm which are explicit in the local ...
متن کاملA-posteriori error analysis of hp-version discontinuous Galerkin finite element methods for second-order quasilinear elliptic problems
We develop the a-posteriori error analysis of hp-version interior-penalty discontinuous Galerkin finite element methods for a class of second-order quasilinear elliptic partial differential equations. Computable upper and lower bounds on the error are derived in terms of a natural (mesh-dependent) energy norm. The bounds are explicit in the local mesh size and the local degree of the approximat...
متن کاملEnergy Norm a Posteriori Error Estimation of Hp - Adaptive Discontinuous Galerkin Methods for Elliptic Problems
In this paper, we develop the a posteriori error estimation of hp-version interior penalty discontinuous Galerkin discretizations of elliptic boundary-value problems. Computable upper and lower bounds on the error measured in terms of a natural (mesh-dependent) energy norm are derived. The bounds are explicit in the local mesh sizes and approximation orders. A series of numerical experiments il...
متن کاملA posteriori error bounds for discontinuous Galerkin methods for quasilinear parabolic problems
We derive a posteriori error bounds for a quasilinear parabolic problem, which is approximated by the hp-version interior penalty discontinuous Galerkin method (IPDG). The error is measured in the energy norm. The theory is developed for the semidiscrete case for simplicity, allowing to focus on the challenges of a posteriori error control of IPDG space-discretizations of strictly monotone quas...
متن کاملTwo-Grid hp-Version Discontinuous Galerkin Finite Element Methods for Quasilinear PDEs
In this thesis we study so-called two-grid hp-version discontinuous Galerkin finite element methods for the numerical solution of quasilinear partial differential equations. The two-grid method is constructed by first solving the nonlinear system of equations stemming from the discontinuous Galerkin finite element method on a coarse mesh partition; then, this coarse solution is used to linearis...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Math. Comput.
دوره 77 شماره
صفحات -
تاریخ انتشار 2008